Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 648
Filtrar
1.
Materials (Basel) ; 17(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591581

RESUMO

Fused silica was polished to a high quality by a CO2 laser beam with a rapid scanning rate. The rapid scanning rate produced a line laser heat source, resulting in a "polishing line" during the polishing process. The Taguchi method was used to evaluate the comprehensive influence of polishing process parameters on the polishing qualities. Four factors, namely the length of laser reciprocating scanning (A), laser beam scanning speed (B), feed speed (C), and defocusing amount (D), were investigated in this study. The optimal process parameter combination (A1B1C1D1) was obtained. The surface roughness of fused silica was reduced from Ra = 0.157 µm to 0.005 µm. Through analysis of variance (ANOVA), it was found that laser beam scanning speed (B) had a significant influence on the polishing quality. The interaction of the two factors plays a decisive role in the determination of the best process parameters, and the influence of other multi-factor interaction can be ignored; the interaction between A × B is the largest, with a contribution of 42.69%.

2.
J Am Chem Soc ; 146(15): 10908-10916, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579155

RESUMO

Self-assembly of sophisticated polyhedral cages has drawn much attention because of their elaborate structures and potential applications. Herein, we report the anion-coordination-driven assembly of the first A8L12 (A = anion, L = ligand) octanuclear cubic structures from phosphate anion and p-xylylene-spaced bis-bis(urea) ligands via peripheral templating of countercations (TEA+ or TPA+). By attaching terminal aryl rings (phenyl or naphthyl) to the ligand through a flexible (methylene) linker, these aryls actively participate in the formation of plenty of "aromatic pockets" for guest cation binding. As a result, multiple peripheral guests (up to 22) of suitable size are bound on the faces and vertices of the cube, forming a network of cation-π interactions to stabilize the cube structure. More interestingly, when chiral ligands were used, either diastereomers of mixed Λ- and Δ-configurations (with TEA+ countercation) for the phosphate coordination centers or enantiopure cubes (with TPA+) were formed. Thus, the assembly and chirality of the cube can be modulated by remote terminal groups and peripheral templating tetraalkylammonium cations.

3.
Natl Sci Rev ; 11(5): nwae081, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38577675

RESUMO

Hierarchical self-assembly with long-range order above centimeters widely exists in nature. Mimicking similar structures to promote reaction kinetics of electrochemical energy devices is of immense interest, yet remains challenging. Here, we report a bottom-up self-assembly approach to constructing ordered mesoporous nanofibers with a structure resembling vascular bundles via electrospinning. The synthesis involves self-assembling polystyrene (PS) homopolymer, amphiphilic diblock copolymer, and precursors into supramolecular micelles. Elongational dynamics of viscoelastic micelle solution together with fast solvent evaporation during electrospinning cause simultaneous close packing and uniaxial stretching of micelles, consequently producing polymer nanofibers consisting of oriented micelles. The method is versatile for the fabrication of large-scale ordered mesoporous nanofibers with adjustable pore diameter and various compositions such as carbon, SiO2, TiO2 and WO3. The aligned longitudinal mesopores connected side-by-side by tiny pores offer highly exposed active sites and expedite electron/ion transport. The assembled electrodes deliver outstanding performance for lithium metal batteries.

4.
Biomaterials ; 308: 122558, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38581764

RESUMO

Mesenchymal stem cell (MSC)-based therapy is an effective strategy for regenerative therapy. However, safety and ease of use are still issues to be overcome in clinical applications. Exosomes are naturally derived nanoparticles containing bioactive molecules, which serve as ideal cell-free therapeutic modalities. However, issues such as delivery, long-term preservation and activity maintenance of exosomes are other problems that limit their application. In this study, we proposed the use of rapid freeze-dry-thaw macroporous hydrogels for the encapsulation of HucMSC-derived exosomes (HucMSC-Exos) combined with an antimicrobial peptide coating. This exosome-encapsulated hyaluronic acid macroporous hydrogel HD-DP7/Exo can achieve long-term storage and transport by lyophilization and can be rapidly redissolved for treatment. After comprehensively comparing the therapeutic effects of HucMSC-Exos and HucMSC-loaded hydrogels, we found that HucMSC-Exos could also effectively regulate fibroblasts, vascular endothelial cells, and macrophages and inhibit myofibroblast-mediated fibrosis, thus promoting tissue regeneration and inhibiting scar formation in a mouse model of deep second-degree burn infection healing. These properties of lyophilized storage and whole-process-repair make HD-DP7/Exo have potential application value and application prospects.

5.
Food Res Int ; 184: 114205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609253

RESUMO

With the advent of industrialization, there has been a substantial increase in the production and consumption of ultra-processed foods (UPFs). These processed foods often contain artificially synthesized additives, such as emulsifiers. Emulsifiers constitute approximately half of the total amount of food additives, with Tween 80 being a commonly used emulsifier in the food industry. Concurrently, China is undergoing significant demographic changes, transitioning into an aging society. Despite this demographic shift, there is insufficient research on the health implications of food emulsifiers, particularly on the elderly population. In this study, we present novel findings indicating that even at low concentrations, Tween 80 suppressed the viability of multiple cell types. Prolonged in vivo exposure to 1 % Tween 80 in drinking water induced liver lipid accumulation and insulin resistance in young adult mice under a regular chow diet. Intriguingly, in mice with high-fat diet (HFD) induced metabolic dysfunction-associated steatotic liver disease (MASLD), this inductive effect was masked. In aged mice, liver lipid accumulation was replicated under prolonged Tween 80 exposure. We further revealed that Tween 80 induced inflammation in both adult and aged mice, with a more pronounced inflammation in aged mice. In conclusion, our study provides compelling evidence that Tween 80 could contribute to a low-grade inflammation and liver lipid accumulation. These findings underscore the need for increasing attention regarding the consumption of UPFs with Tween 80 as the emulsifier, particularly in the elderly consumers.


Assuntos
Fígado Gorduroso , Polissorbatos , Humanos , Idoso , Adulto Jovem , Animais , Camundongos , Polissorbatos/efeitos adversos , Dieta Hiperlipídica , Emulsificantes/efeitos adversos , Inflamação , Lipídeos
6.
Int J Nanomedicine ; 19: 3315-3332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617797

RESUMO

Background: Acute myocardial infarction (AMI) is a common cardiovascular disease in clinic. Currently, there is no specific treatment for AMI. Carbon dots (CDs) have been reported to show excellent biological activities, which hold promise for the development of novel nanomedicines for the treatment of cardiovascular diseases. Methods: In this study, we firstly prepared CDs from the natural herb Curcumae Radix Carbonisata (CRC-CDs) by a green, simple calcination method. The aim of this study is to investigate the cardioprotective effect and mechanism of CRC-CDs on isoproterenol (ISO) -induced myocardial infarction (MI) in rats. Results: The results showed that pretreatment with CRC-CDs significantly reduced serum levels of cardiac enzymes (CK-MB, LDH, AST) and lipids (TC, TG, LDL) and reduced st-segment elevation and myocardial infarct size on the ECG in AMI rats. Importantly, cardiac ejection fraction (EF) and shortening fraction (FS) were markedly elevated, as was ATPase activity. In addition, CRC-CDs could significantly increase the levels of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), and reduce the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in myocardial tissue, thereby exerting cardioprotective effect by enhancing the antioxidant capacity of myocardial tissue. Moreover, the TUNEL staining image showed that positive apoptotic cells were markedly declined after CRC-CDs treatment, which indicate that CRC-CDs could inhibit cardiomyocyte apoptosis. Importantly, The protective effect of CRC-CDs on H2O2 -pretreated H9c2 cells was also verified in vitro. Conclusion: Taken together, CRC-CDs has the potential for clinical application as an anti-myocardial ischemia drug candidate, which not only provides evidence for further broadening the biological application of cardiovascular diseases, but also offers potential hope for the application of nanomedicine to treat intractable diseases.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Animais , Ratos , Peróxido de Hidrogênio , Infarto do Miocárdio/tratamento farmacológico , Miocárdio , Carbono
7.
Anesthesiology ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537025

RESUMO

BACKGROUND: Although it has been established that elevated blood pressure and its variability worsen outcomes in spontaneous intracerebral hemorrhage, antihypertensives use during the acute phase still lacks robust evidence. A blood pressure-lowering regimen using remifentanil and dexmedetomidine might be a reasonable therapeutic option given their analgesic and anti-sympathetic effects. The objective of this superiority trial was to validate the efficacy and safety of this blood pressure-lowering strategy that uses remifentanil and dexmedetomidine in patients with acute intracerebral hemorrhage. METHODS: In this multicenter, prospective, single-blinded, superiority randomized controlled trial, patients with intracerebral hemorrhage and systolic blood pressure (SBP) ≥150 mmHg were randomly allocated to the intervention group (a preset protocol with a standard guideline management using remifentanil and dexmedetomidine) or the control group (standard guideline-based management) to receive blood pressure-lowering treatment. The primary outcome was the SBP control rate (<140 mmHg) at 1 h posttreatment initiation. Secondary outcomes included blood pressure variability, neurologic function and clinical outcomes. RESULTS: A total of 338 patients were allocated to the intervention (n = 167) or control group (n = 171). The SBP control rate at 1 h posttreatment initiation in the intervention group was higher than that in controls (101/161, 62.7% vs. 66/166, 39.8%, difference 23.2%, 95% CI, 12.4 to 34.1%, P < 0.001). Analysis of secondary outcomes indicated that patients in the intervention group could effectively reduce agitation while achieving lighter sedation, but no improvement in clinical outcomes was observed. Regarding safety, the incidence of bradycardia and respiratory depression was higher in the intervention group. CONCLUSIONS: Among intracerebral hemorrhage patients with a SBP ≥ 150 mmHg, a preset protocol using a remifentanil and dexmedetomidine-based standard guideline management significantly increased the SBP control rate at 1 h posttreatment compared with the standard guideline-based management. (ClinicalTrials.gov number: NCT03207100, Registration date: June 30, 2017).

8.
Nat Commun ; 15(1): 2648, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531848

RESUMO

Root tips can sense moisture gradients and grow into environments with higher water potential. This process is called root hydrotropism. Here, we report three closely related receptor-like kinases (RLKs) that play critical roles in root hydrotropism: ALTERED ROOT HYDROTROPIC RESPONSE 1 (ARH1), FEI1, and FEI2. Overexpression of these RLKs strongly reduce root hydrotropism, but corresponding loss-of-function mutants exhibit an increased hydrotropic response in their roots. All these RLKs show polar localization at the plasma membrane regions in root tips. The biosynthesis of the cell wall, cutin, and wax (CCW) is significantly impaired in root tips of arh1-2 fei1-C fei2-C. A series of known CCW mutants also exhibit increased root hydrotropism and reduced osmotic tolerance, similar to the characteristics of the triple mutant. Our results demonstrat that the integrity of the cell wall, cutin, and root cap wax mediate a trade-off between root hydrotropism and osmotic tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Gravitropismo/fisiologia , Raízes de Plantas/metabolismo , Tropismo/fisiologia , Proteínas de Arabidopsis/metabolismo , Água/metabolismo , Parede Celular/metabolismo
9.
Acta Pharm Sin B ; 14(3): 905-952, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486980

RESUMO

Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.

10.
Front Immunol ; 15: 1326137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469295

RESUMO

Duodenogastric reflux (DGR) has been linked to the onset of gastric cancer (GC), although the precise mechanism is yet obscure. Herein, we aimed to investigate how refluxed bile acids (BAs) and macrophages are involved in gastric carcinogenesis. In both active human bile reflux gastritis and the murine DGR model, ubiquitin specific protease 50 (USP50) was dramatically raised, and macrophages were the principal leukocyte subset that upregulated USP50 expression. Enhancing USP50 expression amplified bile acid-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and subsequent high-mobility group box protein 1 (HMGB1) release, while USP50 deficiency resulted in the reversed alteration. Mechanistically, USP50 interacted with and deubiquitinated apoptosis-associated speck-like protein containing CARD (ASC) to activate NLRP3 inflammasome. The release of HMGB1 contributes to gastric tumorigenesis by PI3K/AKT and MAPK/ERK pathways. These results may provide new insights into bile reflux-related gastric carcinogenesis and options for the prevention of DGR-associated GC.


Assuntos
Refluxo Biliar , Refluxo Duodenogástrico , Proteína HMGB1 , Animais , Humanos , Camundongos , Carcinogênese , Transformação Celular Neoplásica , Proteína HMGB1/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosfatidilinositol 3-Quinases
11.
Proc Natl Acad Sci U S A ; 121(13): e2315407121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502699

RESUMO

Organic electrodes mainly consisting of C, O, H, and N are promising candidates for advanced batteries. However, the sluggish ionic and electronic conductivity limit the full play of their high theoretical capacities. Here, we integrate the idea of metal-support interaction in single-atom catalysts with π-d hybridization into the design of organic electrode materials for the applications of lithium (LIBs) and potassium-ion batteries (PIBs). Several types of transition metal single atoms (e.g., Co, Ni, Fe) with π-d hybridization are incorporated into the semiconducting covalent organic framework (COF) composite. Single atoms favorably modify the energy band structure and improve the electronic conductivity of COF. More importantly, the electronic interaction between single atoms and COF adjusts the binding affinity and modifies ion traffic between Li/K ions and the active organic units of COFs as evidenced by extensive in situ and ex situ characterizations and theoretical calculations. The corresponding LIB achieves a high reversible capacity of 1,023.0 mA h g-1 after 100 cycles at 100 mA g-1 and 501.1 mA h g-1 after 500 cycles at 1,000 mA g-1. The corresponding PIB delivers a high reversible capacity of 449.0 mA h g-1 at 100 mA g-1 after 150 cycles and stably cycled over 500 cycles at 1,000 mA g-1. This work provides a promising route to engineering organic electrodes.

12.
iScience ; 27(3): 109118, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439955

RESUMO

Duodenogastric reflux (DGR) is closely associated with gastric inflammation and tumorigenesis; however, the precise mechanism is unclear. Hence, we aim to clarify this molecular mechanism and design an effective therapeutic strategy based on it. The present study found that DGR induced TXNIP/NLRP3 inflammasome activation and triggered pyroptosis in gastric mucosa in vitro and in vivo, in which endoplasmic reticulum (ER) stress via PERK/eIF2α/CHOP signaling was involved. Mechanistically, farnesoid X receptor (FXR) antagonized the DGR-induced PERK/eIF2α/CHOP pathway and reduced TXNIP and NLRP3 expression. Moreover, FXR suppressed NLRP3 inflammasome activation by physically interacting with NLRP3 and caspase-1. Administration of the FXR agonist OCA protected the gastric mucosa from DGR-induced barrier disruption and mucosal inflammation. In conclusion, our study demonstrates the involvement of TXNIP/NLRP3 inflammasome-mediated pyroptosis in DGR-induced gastric inflammation. FXR antagonizes gastric barrier disruption and mucosal inflammation induced by DGR. Restoration of FXR activity may be a therapeutic strategy for DGR-associated gastric tumorigenesis.

13.
Front Immunol ; 15: 1327166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375472

RESUMO

As the largest peripheral lymphoid organ in poultry, the spleen plays an essential role in regulating the body's immune capacity. However, compared with chickens and ducks, information about the age- and breed-related changes in the goose spleen remains scarce. In this study, we systematically analyzed and compared the age-dependent changes in the morphological, histological, and transcriptomic characteristics between Landes goose (LG; Anser anser) and Sichuan White goose (SWG; Anser cygnoides). The results showed a gradual increase in the splenic weights for both LG and SWG until week 10, while their splenic organ indexes reached the peak at week 6. Meanwhile, the splenic histological indexes of both goose breeds continuously increased with age, reaching the highest levels at week 30. The red pulp (RP) area was significantly higher in SWG than in LG at week 0, while the splenic corpuscle (AL) diameter was significantly larger in LG than in SWG at week 30. At the transcriptomic level, a total of 1710 and 1266 differentially expressed genes (DEGs) between week 0 and week 30 were identified in spleens of LG and SWG, respectively. Meanwhile, a total of 911 and 808 DEGs in spleens between LG and SWG were identified at weeks 0 and 30, respectively. Both GO and KEGG enrichment analysis showed that the age-related DEGs of LG or SWG were dominantly enriched in the Cell cycle, TGF-beta signaling, and Wnt signaling pathways, while most of the breed-related DEGs were enriched in the Neuroactive ligand-receptor interaction, Cytokine-cytokine receptor interaction, ECM-receptor interaction, and metabolic pathways. Furthermore, through construction of protein-protein interaction networks using significant DEGs, it was inferred that three hub genes including BUB1, BUB1B, and TTK could play crucial roles in regulating age-dependent goose spleen development while GRIA2, GRIA4, and RYR2 could be crucial for the breed-specific goose spleen development. These data provide novel insights into the splenic developmental differences between Chinese and European domestic geese, and the identified crucial pathways and genes are helpful for a better understanding of the mechanisms regulating goose immune functions.


Assuntos
Gansos , Baço , Animais , Gansos/genética , Galinhas/genética , Perfilação da Expressão Gênica , Transcriptoma
14.
Front Vet Sci ; 11: 1335152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414655

RESUMO

Due to the demands for both environmental protection and modernization of the goose industry in China, the traditional goose waterside rearing systems have been gradually transitioning to the modern intensive dryland rearing ones, such as the net-floor mixed rearing system (MRS) and cage rearing system (CRS). However, the goose immune responses to different dryland rearing systems remain poorly understood. This study aimed to investigate and compare the age-dependent effects of MRS and CRS on the splenic histomorphological characteristics and immune-related genes expression profiles among three economically important goose breeds, including Sichuan White goose (SW), Gang goose (GE), and Landes goose (LD). Morphological analysis revealed that the splenic weight and organ index of SW were higher under CRS than under MRS (p < 0.05). Histological observations showed that for SW and LD, the splenic corpuscle diameter and area as well as trabecular artery diameter were larger under MRS than under CRS at 30 or 43 weeks of age (p < 0.05), while the splenic red pulp area of GE was larger under CRS than under MRS at 43 weeks of age (p < 0.05). Besides, at 43 weeks of age, higher mRNA expression levels of NGF, SPI1, and VEGFA in spleens of SW were observed under MRS than under CRS (p < 0.05), while higher levels of HSPA2 and NGF in spleens of LD were observed under MRS than under CRS (p < 0.05). For GE, there were higher mRNA expression levels of MYD88 in spleens under CRS at 30 weeks of age (p < 0.05). Moreover, our correlation analysis showed that there appeared to be more pronounced positive associations between the splenic histological parameters and expression levels of several key immune-related genes under MRS than under CRS. Therefore, it is speculated that the geese reared under MRS might exhibit enhanced immune functions than those under CRS, particularly for SW and LD. Although these phenotypic differences are assumed to be associated with the age-dependent differential expression profiles of HSPA2, MYD88, NGF, SPI1, and VEGFA in the goose spleen, the underlying regulatory mechanisms await further investigations.

15.
J Nat Med ; 78(2): 342-354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324123

RESUMO

Evodiamine, a novel alkaloid, was isolated from the fruit of tetradium. It exerts a diversity of pharmacological effects and has been used to treat gastropathy, hypertension, and eczema. Several studies reported that evodiamine has various biological effects, including anti-nociceptive, anti-bacterial, anti-obesity, and anti-cancer activities. However, there is no research regarding its effects on drug-resistant cancer. This study aimed to investigate the effect of evodiamine on human vemurafenib-resistant melanoma cells (A375/R cells) proliferation ability and its mechanism. Cell activity was assessed using the cell counting kit-8 (CCK-8) method. Flow cytometry assay was used to assess cell apoptosis and cell cycle. A xenograft model was used to analyze the inhibitory effects of evodiamine on tumor growth. Bioinformatics analyses, network pharmacology, and molecular docking were used to explore the potential mechanism of evodiamine in vemurafenib-resistant melanoma. RT-qPCR and Western blotting were performed to reveal the molecular mechanism. The alkaloid extract of the fruit of tetradium, evodiamine showed the strongest tumor inhibitory effect on vemurafenib-resistant melanoma cells compared to treatment with vemurafenib alone. Evodiamine inhibited vemurafenib-resistant melanoma cell growth, proliferation, and induced apoptosis, conforming to a dose-effect relationship and time-effect relationship. Results from network pharmacology and molecular docking suggested that evodiamine might interact with IRS4 to suppress growth of human vemurafenib-resistant melanoma cells. Interestingly, evodiamine suppressed IRS4 expression and then inhibited PI3K/AKT signaling pathway, and thus had the therapeutic action on vemurafenib-resistant melanoma.


Assuntos
Alcaloides , Antineoplásicos , Melanoma , Quinazolinas , Humanos , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , Alcaloides/farmacologia , Linhagem Celular Tumoral , Proteínas Substratos do Receptor de Insulina/metabolismo
16.
Adv Mater ; : e2400764, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415407

RESUMO

Supported metal catalysts have been exploited in various applications. Among them, cocatalyst supported on photocatalyst is essential for activation of photocatalysis. However, cocatalyst decoration in a controllable fashion to promote intrinsic activity remains challenging. Herein, a versatile method is developed for cocatalyst synthesis using an ice-templating (ICT) strategy, resulting in size control from single-atom (SA), and atomic clusters (AC) to nanoparticles (NP). Importantly, the coordination numbers (CN) of decorated AC cocatalysts are highly controllable, and this ICT method applies to various metals and photocatalytic substrates. Taking narrow-band gap Ga-doped La5 Ti2 Cu0.9 Ag0.1 O7 S5 (LTCA) photocatalyst as an example, supported Ru AC/LTCA catalysts with regulable Ru CNs have been prepared, delivering significantly enhanced activities compared to Ru SA and Ru NPs supported on LTCA. Specifically, Ru(CN = 3.4) AC/LTCA with an average CN of Ru─Ru bond measured to be ≈3.4 exhibits excellent photocatalytic H2 evolution rate (578 µmol h-1 ) under visible light irradiation. Density functional theory calculation reveals that the modeled Ru(CN = 3) atomic cluster cocatalyst possesses favorable electronic properties and available active sites for the H2 evolution reaction.

17.
Adv Sci (Weinh) ; 11(12): e2307022, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243847

RESUMO

In clinics, hepcidin levels are elevated in various anemia-related conditions, particularly in iron-refractory anemia and in high inflammatory states that suppress iron absorption, which remains an urgent unmet medical need. To identify effective treatment options for various types of iron-refractory anemia, the potential effect of hypoxia and pharmacologically-mimetic drug FG-4592 (Roxadustat) are evaluated, a hypoxia-inducible factor (HIF)-prolyl hydroxylase (PHD) inhibitor, on mouse models of iron-refractory iron-deficiency anemia (IRIDA), anemia of inflammation and 5-fluorouracil-induced chemotherapy-related anemia. The potent protective effects of both hypoxia and FG-4592 on IRIDA as well as other 2 tested mouse cohorts are found. Mechanistically, it is demonstrated that hypoxia or FG-4592 could stabilize duodenal Hif2α, leading to the activation of Fpn transcription regardless of hepcidin levels, which in turn results in increased intestinal iron absorption and the amelioration of hepcidin-activated anemias. Moreover, duodenal Hif2α overexpression fully rescues phenotypes of Tmprss6 knockout mice, and Hif2α knockout in the gut significantly delays the recovery from 5-fluorouracil-induced anemia, which can not be rescued by FG-4592 treatment. Taken together, the findings of this study provide compelling evidence that targeting intestinal hypoxia-related pathways can serve as a potential therapeutic strategy for treating a broad spectrum of anemia, especially iron refractory anemia.


Assuntos
Anemia Refratária , Anemia , Animais , Camundongos , Anemia/tratamento farmacológico , Anemia Refratária/tratamento farmacológico , Fluoruracila/uso terapêutico , Glicina , Hepcidinas/uso terapêutico , Hipóxia , Ferro , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico
18.
Adv Mater ; 36(15): e2310061, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227292

RESUMO

Integrating the advantages of homogeneous and heterogeneous catalysis has proved to be an optimal strategy for developing catalytic systems with high efficiency, selectivity, and recoverability. Supramolecular metal-organic cages (MOCs), assembled by the coordination of metal ions with organic linkers into discrete molecules, have performed solvent processability due to their tunable packing modes, endowing them with the potential to act as homogeneous or heterogeneous catalysts in different solvent systems. Here, the design and synthesis of a series of stable {Cu3} cluster-based tetrahedral MOCs with varied packing structures are reported. These MOCs, as homogeneous catalysts, not only show high catalytic activity and selectivity regardless of substrate size during the CO2 cycloaddition reaction, but also can be easily recovered from the reaction media through separating products and co-catalysts by one-step work-up. This is because that these MOCs have varied solubilities in different solvents due to the tunable packing of MOCs in the solid state. Moreover, the entire catalytic reaction system is very clean, and the purity of cyclic carbonates is as high as 97% without further purification. This work provides a unique strategy for developing novel supramolecular catalysts that can be used for homogeneous catalysis and recycled in a heterogeneous manner.

19.
J Biophotonics ; 17(4): e202300497, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38282467

RESUMO

The influence of femtosecond laser parameters on the degree of thermal denaturation was studied experimentally. The relationship between the degree of thermal denaturation and the characteristic parameters of skin microstructure and the secondary structure of skin tissue proteins in characterizing the degree of thermal damage was analyzed. The results showed the interaction of laser power, laser power, and scanning speed had a significant effect on the degree of thermal denaturation; greater degrees of thermal denaturation were associated with larger second-order moments of the texture angle of the skin microtissue and smaller entropy values and contrast, indicating a greater degree of thermal damage; and higher peak temperature, the lower peak intensity of Raman spectra, decrease in the percentage area of α-helix fitted curves and increase in the percentage area of ß-sheet and ß-turn fitted curves indicate that the protein is denatured to a large extent that means thermal damage is large.


Assuntos
Temperatura Alta , Estrutura Secundária de Proteína , Desnaturação Proteica
20.
Angew Chem Int Ed Engl ; 63(11): e202400049, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38193338

RESUMO

Photodynamic therapy (PDT), as an emerging cancer treatment, requires the development of highly desirable photosensitizers (PSs) with integrated functional groups to achieve enhanced therapeutic efficacy. Coordination-driven self-assembly (CDSA) would provide an alternative approach for combining multiple PSs synergistically. Here, we demonstrate a simple yet powerful strategy of combining conventional chromophores (tetraphenylethylene, porphyrin, or Zn-porphyrin) with pyridinium salt PSs together through condensation reactions, followed by CDSA to construct a series of novel metallo-supramolecular PSs (S1-S3). The generation of reactive oxygen species (ROS) is dramatically enhanced by the direct combination of two different PSs, and further reinforced in the subsequent ensembles. Among all the ensembles, S2 with two porphyrin cores shows the highest ROS generation efficiency, specific interactions with lysosome, and strong emission for probing cells. Moreover, the cellular and living experiments confirm that S2 has excellent PDT efficacy, biocompatibility, and biosafety. As such, this study will enable the development of more efficient PSs with potential clinical applications.


Assuntos
Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...